

МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ К ПРАКТИЧЕСКИМ РАБОТАМ

по дисциплине «ЕН.01 Математика»

по специальности СПО

20.02.04 «Пожарная безопасность»

Ижевск 2020 г.

1. Паспорт задания для практических работ

В результате освоения учебной дисциплины «Математика» обучающийся должен обладать предусмотренными ФГОС по специальности СПО 20.02.04 «Пожарная безопасность», базовой подготовки следующими умениями, знаниями, которые формируют профессиональную компетенцию, и общими компетенциями:

Специалист базовой подготовки должен обладать общими компетенциями, включающими в себя способность:

- ОК 1. Понимать сущность и социальную значимость своей будущей профессии, проявлять к ней устойчивый интерес.
- ОК 2. Организовывать собственную деятельность, выбирать типовые методы и способы выполнения профессиональных задач, оценивать их эффективность и качество.
- ОК 3. Принимать решения в стандартных и нестандартных ситуациях и нести за них ответственность.
- ОК 4. Осуществлять поиск и использование информации, необходимой для эффективного выполнения профессиональных задач, профессионального и личностного развития.
- ОК 5. Использовать информационно-коммуникационные технологии в профессиональной деятельности.
- ОК 6. Работать в коллективе и в команде, эффективно общаться с коллегами, руководством, потребителями.
- ОК 7. Брать на себя ответственность за работу членов команды (подчиненных), за результат выполнения заданий.
- ОК 8. Самостоятельно определять задачи профессионального и личностного развития, заниматься самообразованием, осознанно планировать повышение квалификации.
- ОК 9. Ориентироваться в условиях частой смены технологий в профессиональной деятельности.
- ПК 1.1. Организовывать несение службы и выезд по тревоге дежурного караула пожарной части
- ПК 1.2. Проводить подготовку личного состава к действиям по тушению пожаров.
- ПК 1.3. Организовывать действия по тушению пожаров.
- ПК 1.4. Организовывать проведение аварийно-спасательных работ.
- ПК 2.1. Осуществлять проверки противопожарного состояния промышленных, сельскохозяйственных объектов, зданий и сооружений различного назначения.
- ПК 2.2. Разрабатывать мероприятия, обеспечивающие пожарную безопасность зданий, сооружений, технологических установок и производств.
- ПК 2.3. Проводить правоприменительную деятельность по пресечению нарушений требований пожарной безопасности при эксплуатации объектов, зданий и сооружений.
- ПК 2.4. Проводить противопожарную пропаганду и обучать граждан, персонал объектов правилам пожарной безопасности.
- ПК 3.1. Организовывать регламентное обслуживание пожарно-технического вооружения, аварийно
- аварийно-спасательного оборудования и техники.
- ПК 3.2. Организовывать ремонт технических средств.
- ПК 3.3. Организовывать консервацию и хранение технических и автотранспортных средств.

В результате освоения дисциплины обучающийся должен уметь: -решать прикладные задачи в области профессиональной деятельности;

В результате освоения дисциплины обучающийся должен знать:

- значение математики в профессиональной деятельности и при освоении профессиональной образовательной программы;
- основные математические методы решения прикладных задач в области профессиональной деятельности;
- основные понятия и методы математического анализа, дискретной математики, линейной алгебры, теории комплексных чисел, теории вероятностей и математической статистики;
 - основы интегрального и дифференциального исчисления.

Формой аттестации по учебной дисциплине является экзамен.

Результаты освоения учебной дисциплины, подлежащие проверке

В результате аттестации по учебной дисциплине осуществляется комплексная проверка следующих умений и знаний, а также динамика формирования общих компетенций:

формирования общих компетенции:				
Результаты обучения: умения, знания и общие компетенции	Показатели оценки результата			
Умение решать задачи	порядка действия с ними			
математического	Выполнение действий над векторами			
анализа, линейной	Нахождение скалярного, векторного и смешанного			
алгебры и	произведения векторов			
аналитической	Построение точек и нахождение их координат в			
геометрии	прямоугольной декартовой и полярной системах			
	координат			

	Вычисление предела функции в точке и в бесконечности		
	Исследование функции на непрерывность в точке		
	Нахождение производной функции		
	Нахождение производных высших порядков		
	Исследование функции и построение графика		
	Нахождение неопределенных интегралов		
	Вычисление определенных интегралов		
	Нахождение частных производных		
	Исследование рядов на сходимость		
	Выполнение действий над матрицами		
	Вычисление определителей		
	Решение систем линейных уравнений методом обратной		
	матрицы		
	Решение систем линейных уравнений методом Гаусса		
	Решение систем линейных уравнений по формулам		
	Крамера		
Умение применять			
различные методы			
для решения	D		
обыкновенных	Решение дифференциальных уравнений первого и		
дифференциальных	второго порядка		
уравнений и их			
систем			

i 	
Умение решать	- Нахождение вероятности случайного события
вероятностные и	- Составление закона распределения случайной величины
статистические	- Вычисление числовых характеристик случайных
задачи	величин
Знание основных	Формулировка определений и перечисление свойств
методов	скалярного, векторного и смешанного произведения
математического	векторов
анализа,	- Классификация точек разрыва
аналитической	- Формулировка правил дифференцирования и
геометрии,	перечисление производных основных элементарных
линейной алгебры,	функций
элементарной	- Перечисление табличных интегралов
теории	- Формулировка классического определения вероятности
вероятностей	-Перечисление последовательности действий при
	решении систем линейных уравнений методом обратной
	матрицы, по формулам Крамера, методом Гаусса
Знание	- Формулировка геометрического и механического
математических	смысла производной
моделей	- Приложение определенного интеграла к вычислению
простейших	площадей плоских фигур, объемов тел вращения, пути,
систем и	пройденного точкой
процессов в	- Описание процессов в естествознании и технике с
естествознании	помощью дифференциальных уравнений
и технике	

Порядок оформления:

Работа оформляется в отдельной тетради в соответствии с требованиями, предъявляемыми к практическим работам.

Работы должны быть написаны аккуратно (разборчивый почерк, оставление полей, записаны полностью условия заданий и т.п.).

Приступать к выполнению практической работы следует только после проработки теоретического материала на занятиях, по материалам конспектов и учебника «Математика» для СПО, под редакцией А.А. Дадаян.

ПРАКТИЧЕСКАЯ РАБОТА №1

по учебной дисциплине «Математика»

Тема: Вычисление пределов функций с использованием первого и второго замечательных пределов.

Цель: Научиться применять теоретические знания вычисления пределов и использовать формулы первого и второго замечательных пределов к решению упражнений.

Время выполнения: Повторение теоретического материала — 12 минут, решение по образцу — 18 минут, самостоятельное выполнение заданий — 60 минут. Задания.

Найти пределы:

Вариант 1 Вариант 2 Вариант 3

1.
$$\lim \frac{5x^2 - 3x + 2}{2x^2 + 4x + 1}$$
 1. $\lim \frac{x}{\sqrt{x + 25} - 5}$ 1. $\lim (1 + \frac{5}{x})^{2x}$ $x \to \infty$

1.
$$\lim \frac{x}{\sqrt{x+25}}$$

1.
$$\lim (1+\frac{5}{x})^{2x}$$

$$x \rightarrow \infty$$

$$x \rightarrow 0$$

$$x \rightarrow \infty$$

2.
$$\lim \frac{3x-1}{x^2+1}$$

2.
$$\lim \frac{x}{\sqrt{x+16}-4}$$
 2. $\lim (1+\frac{2}{x})^{-3x}$

2.
$$\lim (1+\frac{2}{x})^{-3x}$$

$$x \rightarrow \infty$$

3.
$$\lim \frac{7x^3 - 2x^2 + 7}{7x^2 - 1}$$

3.
$$\lim \frac{x}{\sqrt{x+49}-7}$$
 3. $\lim (1-\frac{4}{x})^{-0.5x}$

3.
$$\lim (1-\frac{4}{r})^{-0.5x}$$

 $x \rightarrow \infty$

$$x \rightarrow 0$$

$$x \rightarrow \infty$$

4.
$$\lim \frac{7x^6 + x^4}{x^5 - x + 4}$$

$$4. \lim \frac{x}{\sqrt{3x+1}-1}$$

4.
$$\lim_{x \to \infty} (1 + \frac{1}{x})^{2.5x}$$

$$x \rightarrow \infty$$

$$x \rightarrow \infty$$

5.
$$\lim \frac{x^3 - 1}{x^2 + 1}$$

$$5. \lim \frac{x}{3 - \sqrt{x+9}}$$

5.
$$\lim_{x \to 0} (1-x)^{4/x}$$

$$x \rightarrow \infty$$

$$x\rightarrow 0$$

6.
$$\lim \frac{x^4 - x^2 + 5}{5x^5 + x^3 + 5}$$

6.
$$\lim \frac{x}{10 - \sqrt{x + 100}}$$

6.
$$\lim_{(1+x)^{3/x}}$$

$$x \rightarrow \infty$$

$$x\rightarrow 0$$

7.
$$\lim \frac{x+2}{x^2 - 6x - 16}$$

x \rightarrow -2

$$7. \lim_{x \to 0} \frac{\sin \frac{x}{5}}{\sin x}$$

7.
$$\lim \frac{x^2 + 2x - 8}{x^3 - 8}$$

8.
$$\lim \frac{x^2 - 4}{x^2 + x - 6}$$
$$x \rightarrow 2$$

8.
$$\lim \frac{\sin x}{\cos x + 1}$$
$$x \rightarrow 0$$

8.
$$\lim_{x \to \infty} x(\sqrt{x^2 + 1} - x)$$

$$9. \lim \frac{x^2 - 36}{x - 6}$$

$$x \rightarrow 6$$

$$9. \lim \frac{\sin 6x}{3x}$$

$$x \to 0$$

9.
$$\lim \frac{tgx - \sin x}{x^3}$$

$$x \to 0$$

10.
$$\lim \frac{x^2 + 2x - 15}{x - 3}$$

$$10. \lim \frac{\sin 2x}{\cos 2x + 1}$$

$$x \to 0$$

$$10. \lim \frac{\sqrt{1+2x}-3}{\sqrt{x}-2}$$

$$x \rightarrow 4$$

11.
$$\lim \frac{x-1}{x^2 - 3x + 2}$$

$$11. \lim \frac{5x}{\sin 3x}$$

$$x \to 0$$

11.
$$\lim_{x \to 0} \frac{\sin x}{\cos x - 1}$$

12.
$$\lim \frac{x^2 - 25}{x^2 + 4x - 5}$$

 $x \rightarrow -5x \rightarrow 0$

12.
$$\lim_{x \to \infty}$$

$$12. \lim \left(\frac{x}{2+x}\right)^{3x}$$

ПРАКТИЧЕСКАЯ РАБОТА №2

по учебной дисциплине «Математика»

Тема: Нахождение производных по алгоритму. Вычисление производных сложных функций.

Цель: Научиться вычислять производные по таблице производных и производные сложных функций.

Время выполнения: Повторение теоретического материала – 12 минут, решение по образцу – 18 минут, самостоятельное выполнение заданий – 60 минут.

Задания

Вариант №1

1. Найдите производную функций:

1)
$$f(x) = \operatorname{ctg} x + 2x^3 - 2^x$$
, 2) $f(x) = x^2 \sin x$, 3) $f(x) = \frac{\ln x}{\cos x}$,

2)
$$f(x) = x^2 \sin x$$
,

3)
$$f(x) = \frac{\ln x}{\cos x}$$

4)
$$f(x) = (3x^2 - 2tgx)^5$$
,

4)
$$f(x) = (3x^2 - 2tgx)^5$$
, 5) $f(x) = \frac{5}{x^3} - 3x + \frac{3}{x} - 10$.

6)
$$f(x) = \frac{\sin x}{x}$$

7)
$$f(x) = 3\sin 2x - 2\cos 3x$$

Дополнительное задание.

2. Точка движется по закону $S = 3t^3 - 12t + 5$. Найдите скорость движения при t = 2c.

3. Определите угловой коэффициент касательной, проведенной к кривой $y = 3\cos x + \sin x$ в точке $x_0 = \pi$.

Вариант №2

1. Найдите производную функций:

дите производную функции:
1)
$$f(x) = \frac{12}{x^2} - x + \frac{7}{x} + 8\sqrt{x}$$
, 2) $f(x) = (x^2 - 2\sin x)^3$, 3) $f(x) = \frac{5^x}{\ln x}$,

$$\frac{1}{x^2} - x + \frac{1}{x} + \delta \sqrt{x},$$

4)
$$f(x) = x^2 tgx$$
,

6)
$$f(x)=x^3+\cos x$$
.

2)
$$f(x) = (x^2 - 2\sin x)^3$$

$$3) f(x) = \frac{5^x}{\ln x}$$

5)
$$f(x) = 5\cos x + x^5 - e^x$$
.
7) $f(x)=3^{4x}+x^2$

7)
$$f(x)=3^{4x}+x^2$$

Дополнительное задание.

2. Точка движется по закону $S = 2t^3 + t - 5$. Найдите скорость движения при t = 3c.

3. Определите угловой коэффициент касательной, проведенной к кривой $y = e^{x} + \ln x$ в точке

$$x_0 = 1$$
.

Вариант №3

1. Найдите производную функций:

$$1) f(x) = \frac{\ln x}{x^4}.$$

1)
$$f(x) = \frac{\ln x}{x^4}$$
, 2) $f(x) = (x - 5\cos x)^3$, 3) $f(x) = \frac{4}{x^8} - 2x^9 + \frac{7}{\sqrt{x}} - 2$,
4) $f(x) = x^7 \cot x$, 5) $f(x) = \sin x - 2x^7 - 6^x$.
6) $f(x) = 2x - \sin x$. 7) $f(x) = 4e^{5x} - 7x^3$

$$4) f(x) = x^{7} ctgx,$$

5)
$$f(x) = \sin x - 2x^7 - 6^x$$

6)
$$f(x)=2x - \sin x$$
.

7)
$$f(x) = 4e^{5x} - 7x^3$$

Дополнительное задание.

- 2. Точка движется по закону $S = 5t^3 8t + 3$. Найдите скорость движения при t = 1c.
- 3. Определите угловой коэффициент касательной, проведенной к кривой y=3tgx- cosx в точке $x_0=\pi$.

Вариант №4

1. Найдите производную функций:

1)
$$f(x) = \cos x + 6x^4 - 4^x$$
, 2) $f(x) = x^3 \cot x$, 3) $f(x) = \frac{e^x}{\sin x}$,
4) $f(x) = (2x^3 - 5\ln x)^3$, 5) $f(x) = \frac{2}{x^4} - 3x + \frac{7}{x} + 1$.
6) $f(x) = 2^x + 1$ 7) $f(x) = \sin(x + x^3) - \frac{1}{2}x^4$.

Дополнительное задание.

- 2. Точка движется по закону $S = 2t^3 2t + 5$. Найдите скорость движения при t = 3c.
- 3. Определите угловой коэффициент касательной, проведенной к кривой $y = 3\log_2 x$ -5 в точке $x_0 = 3$.

Вариант №5

1. Найдите производную функций:

1)
$$f(x) = \frac{6}{x^5} - x^7 + \frac{7}{x} - \sqrt{x}$$
, 2) $f(x) = (5x - 4\cos x)^5$, 3) $f(x) = \frac{3^x}{x^5}$,
4) $f(x) = x^2 \operatorname{tgx}$, 5) $f(x) = 5\sin x + x^6 - 8e^x$.
6) $f(x) = \cos x - x$ 7) $f(x) = -e^x + 3x^{3x}$

Дополнительное задание.

- 2. Точка движется по закону $S = t^3 4t$. Найдите скорость движения при t = 2c.
- 3. Определите угловой коэффициент касательной, проведенной к кривой $y = 3(x^3 + 5)$ в точке $x_0 = 2$.

Вариант №6

1. Найдите производную функций:

1)
$$f(x) = \frac{\sin x}{x^3}$$
, 2) $f(x) = (x^2 - e^x)^5$, 3) $f(x) = \frac{1}{x^9} - 5x^4 + \frac{6}{\sqrt{x}} - 3$,
4) $f(x) = x^5 \ln x$, 5) $f(x) = \sqrt{x} - x^2 - 2^x$
6) $f(x) = x^5 - \sin x$ 7) $f(x) = x^4 + \cos(x + 3x^2)$

Дополнительное задание.

- 2. Точка движется по закону $S = t^3 + 12t$ -5. Найдите скорость движения при t = 2c.
- 3. Определите угловой коэффициент касательной, проведенной к кривой y = 3/x в точке $x_0 = 3$.

ПРАКТИЧЕСКАЯ РАБОТА №3

по учебной дисциплине «Математика»

Тема: Интегрирование простейших функций. Вычисление простейших определенных интегралов.

Цель: Научиться вычислять табличные интегралы и по формуле Ньютона-Лейбница вычислять определенные интегралы.

Время выполнения: Повторение теоретического материала — 12 минут, решение по образцу — 18 минут, самостоятельное выполнение заданий — 60 минут.

Задания.

Вариант 1 Вариант 2

вариант 1	Вариант 2
$1). \int (x^7 - 3\sin x + 2)dx$	1). $\int (9x^8 - 3e^x + 5) dx$
$2). \int \frac{2 - \sqrt[4]{x}}{\sqrt{x}} dx$	$2). \int \frac{7-x^2}{\sqrt{x}} dx$
$3). \int \sqrt[3]{(3x^2 - 1)^2} x dx$	$3) \int \cos 3x dx$
$4). \int x 2^{x^2} dx$	$4).\int \sqrt[4]{(2-\sin x)^3}\cos x dx$
$5). \int_{1}^{2} \frac{x-1}{x^3} dx$	$\int_{1}^{8} \frac{x-1}{\sqrt[3]{x}} dx$
$6). \int_{0}^{n/2} \sqrt{\sin x} \cos x dx$	$6) \int_{0}^{\pi/2} \frac{\sin x dx}{(1 + 2\cos x)^4}$
$7). \int_{0}^{n/2} \sqrt{4 + 5\sin x} \cos x dx$	7). $\int_{0}^{1} (5 - 2x^{3})x^{2} dx$
$8). 2 \int_{-2}^{2} (1+x)^2 dx$	8). $\int_{-1}^{1} (x^2 - 2) dx$

ПРАКТИЧЕСКАЯ РАБОТА №4

по учебной дисциплине «Математика»

Тема: Решение прикладных задач.

Цель: Научиться применять приложения определенного интеграла к вычислению площадей плоских фигур и объемов тел вращения.

Время выполнения: Повторение теоретического материала — 12 минут, решение по образцу — 18 минут, самостоятельное выполнение заданий — 60 минут. Задания.

Вариант 1

- 1. Вычислить определенный интеграл: $\int_0^2 (4x^2 + x 3) dx$ 2. Вычислить определенный интеграл: $\int_0^1 \frac{dx}{1+x^2}$
- 3. Вычислить, предварительно сделав рисунок, площадь фигуры, ограниченной линиями: $y = -x^2 + 4$, y = 0, x = -2, x = 2.
- 4. Найти объем тела, полученного при вращении вокруг оси абсцисс криволинейной трапеции, ограниченной линиями: $y = \sqrt{x}, y = 0, x = 1, x = 4$.
- 5. Скорость движения точки изменяется по закону $v = 3t^2 + 2t + 1$ (м/с). Найти

Вариант 2

- 1. Вычислить определенный интеграл: $\int_0^3 (2x^2 x + 4) dx$
- 2. Вычислить определенный интеграл методом подстановки:

$$\int_0^1 (3x+1)^4 dx$$

- 3. Вычислить, предварительно сделав рисунок, площадь фигуры, ограниченной линиями: $y=-x^2+1$, y=0, x=1
- 4. Найти объем тела, полученного при вращении вокруг оси абсцисс криволинейной трапеции, ограниченной линиями:
- $y = \sqrt{x}, y = 0, x = 0, x = 1.$
- 5. Скорость движения точки изменяется по закону $v = 9t^2 8t(\text{м/c})$. Найти путь S, пройденный точкой за четвертую секунду.

ПРАКТИЧЕСКАЯ РАБОТА №5

по учебной дисциплине «Математика»

Тема: Решение дифференциальных уравнений с разделяющимися переменными. Цель: Научиться решать дифференциальные уравнения с разделяющимися переменными.

Время выполнения: Повторение теоретического материала – 12 минут, решение по образцу – 18 минут, самостоятельное выполнение заданий – 60 минут.

Задания.

Индивидуальное задание по порядковому номеру в журнале, т.е в задании вместо N студент подставляет свой порядковый номер.

Решить дифференциальные уравнения и найти частные решения.

a)
$$\frac{N}{2}x^2dx + (N-5)ydy = 0; x = 0; y = 2$$

$$(a)\frac{dy}{N-y} - \frac{dx}{x-N} = 0; x = 0; y = 1$$

â)
$$(N + 2y)dx - (N - 5 - x)dy = 0; x = 0; y = 1$$

ПРАКТИЧЕСКАЯ РАБОТА №6

по учебной дисциплине «Математика»

Тема: Решение однородных дифференциальных уравнений первого порядка.

Цель: Научиться решать дифференциальные уравнения первого порядка различными методами.

Время выполнения: Повторение теоретического материала -12 минут, решение по образиу – 18 минут, самостоятельное выполнение заданий – 60 минут.

Залания.

Вариант 1

Являются ли данные функции решениями данных дифференциальных уравнений

1.
$$y = \frac{8}{x}, y' = -\frac{1}{8}y^2$$

2. $y = e^{4x} + 2, y' = 4y$

2.
$$y = e^{4x} + 2$$
, $y' = 4y$

3. Решить задачу Коши: $y' = 4x^3 - 2x + 5$, y(1) = 8.

Решить следующие дифференциальные уравнения первого и второго порядка

4.
$$y' = \frac{1}{\cos^2 x} + x^4$$

5.
$$y' = -6y$$

6.
$$y' = \frac{x-1}{y^2}$$

7. $y' = \frac{x-1}{y^2}$

7.
$$y' = \frac{x-1}{y^2}$$

Вариант 2

Являются ли данные функции решениями данных дифференциальных уравнений

1.
$$y = e^{3x} - 5$$
, $y' = 3y + 15$

2.
$$y = \frac{5}{x}, y' = -y^2$$

3. Решить задачу Коши:
$$y' = 3x^2 - 2x + 6$$
, $y(2) = 19$.

Решить следующие дифференциальные уравнения первого и второго порядка

4.
$$y' = \frac{1}{\sqrt{1-x^2}} - x^7$$

5.
$$y' = -8y$$

6.
$$y' = \frac{2x}{y^2}$$

7.
$$y' = \frac{y}{1+x^2}$$

Дополнительное задание.

Индивидуальное задание по порядковому номеру в журнале, т.е. в задании вместо N студент подставляет свой порядковый номер.

Решить дифференциальные уравнения.

$$1)(2x + y)dx - (N - 5)xdy = 0$$

$$2)y = \frac{2N(x^2 + y)}{xy}$$

ПРАКТИЧЕСКАЯ РАБОТА №7

по учебной дисциплине «Математика»

Тема: Решение однородных дифференциальных уравнений второго порядка. Цель: Научиться решать дифференциальные уравнения второго порядка различными методами.

Время выполнения: Повторение теоретического материала – 12 минут, решение по образцу — 18 минут, , самостоятельное выполнение заданий -60 минут .

Задания.

Вариант 1

Являются ли данные функции решениями данных дифференциальных уравнений

1.
$$y = c_1 e^{-5x} + c_2 e^{x}, y'' + 4y' - 5y = 0.$$

2.
$$y = c_1 e^x + c_2 x e^x$$
, $y'' + 2y' - y = 0$.

Решить следующие дифференциальные уравнения первого и второго порядка

3.
$$y' - 3y + 5 = 0$$

4.
$$y'' - 7y' + 10y = 0$$

5.
$$y'' + 4y' + 4y = 0$$

Вариант 2

Являются ли данные функции решениями данных дифференциальных уравнений

1.
$$y = c_1 e^{-2x} + c_2 x e^{-2x}$$
, $y'' + 4y' + 4y = 0$.

2.
$$y = c_1 e^{3x} + c_2 e^x$$
, $y'' - y' - 6y = 0$.

3.
$$y' + 8y - 3 = 0$$

4.
$$y'' + 8y' + 16y = 0$$

5.
$$y'' + y' + 12y = 0$$

ПРАКТИЧЕСКАЯ РАБОТА №8

по учебной дисциплине «Математика»

Тема: Решение простейших задач на определение вероятности. Цель: Научиться решать простейшие задачи на определение вероятности,

математического ожидания.

Время выполнения: Повторение теоретического материала — 12 минут, решение по образцу — 18 минут, , самостоятельное выполнение заданий — 60 минут.

Задания.

Вариант 1

1. Вычислить:

a)
$$\frac{A_{10}^4}{P_8}$$
;

6)
$$C_7^3 + C_7^0$$

- 2.Из урны, в которой находятся 5 белых и 4 черных шара, вынимают один шар. Найти вероятность того, что шар черный.
- 3. В ячейке содержится 10 одинаковых деталей помеченных номерами 1,2,3,...,10. наудачу извлечены 6-ть деталей. Найти вероятность того, что среди извлеченных деталей останется деталь № 1

Вариант 2

1. Вычислить:

a)
$$\frac{\dot{A}_6^5 + \dot{A}_6^4}{\dot{A}_6^3}$$
;

6)
$$C_5^2 + C_3^0$$

- 2. В лотерее из 10 000 билетов имеются 2 000 выигрышных. Вынимают наугад один билет. Чему равна вероятность тому, что билет выигрышный.
- 3. В ящике содержится 10 одинаковых деталей помеченных номерами 1,2,3,...10. научу извлечены 6-сть деталей. Найти вероятность того, что среди извлеченных деталей останется деталь № 1 и №2.

Вариант 3

- 1. Выписать значения выражений:
- A) 5!+6!;
- Б) $\frac{52!}{50!}$
- 2. В ящике 12 белых и 17 черных шаров. Извлекают на удачу один шар. Найти вероятность того, что вынутый шар окажется белым.
- 3.В коробке 5 одинаковых деталей, 3-и из них окрашены, на удачу извлекли 2-а изделия. Найти вероятность того, что среди извлеченных изделий окажется одно окрашенное изделие.

Вариант 4

1. Вычислите:

A)
$$\tilde{N}_{15}^{13}$$

- $\mathbf{\bar{b}})\tilde{N}_{6}^{4}+\tilde{N}_{5}^{0}$
- 2. Пусть имеется 80 деталей, среди которых 60 исправленных, а 20 бракованных. Найти вероятность того, что взята наугад деталь окажется исправной.
- 3. В коробке 5 одинаковых деталей, 3-и из них окрашены, на удачу извлекли 2-а изделия. Найти вероятность того, что среди извлеченных изделий окажется одно окрашенное изделия.

Вариант 5

- 1. Вычислить:
- A) \vec{A}_{25}^3

Б)
$$\frac{\dot{A}_{78}^{3}}{D_{2}}$$

- 2. Телефонный номер состоит из шести цифр. Найдите вероятность, что все цифры различные.
- 3. В группе 14 студентов, из которых 10 отличников. По списку наудачу отбирают 8 студентов. Найти вероятность того, что среди отобранных студентов окажутся 5-ть отличников.

Вариант 6

1. Вычислить:

A)
$$\tilde{N}_{12}^{6}$$

Б) $\frac{\dot{A}_{25}^{3}}{D_{4}}$

- 2. Среди 180 деталей, изготовленных на станке, оказалось 10 деталей, не отвечающих стандарту. Найти вероятность выбора детали, не отвечающих стандарту.
- 3. В цехе работают 6-ть мужчин и 4 женщины. По табельным номерам на удачу отобрали 7 человек. Найти вероятность того, что среди отобранных лиц окажутся 3-и женщины.

ПРАКТИЧЕСКАЯ РАБОТА №9

по учебной дисциплине «Математика»

Тема: Вычисление интегралов по формулам прямоугольников, трапеций, и формуле Симпсона. Оценка погрешности.

Цель: изучение методов численного интегрирования функций, практическое интегрирование функций и сравнение различных методов.

Время выполнения: Повторение теоретического материала—12 минут, решение по образцу—18 минут, , самостоятельное выполнение заданий—60 минут. Задания.

Вариант 1

Найти приближенное значение интеграла вычисленное по формуле прямоугольников и трапеции

$$\int_{0}^{4} (2x+3)dx$$
 где $h = \frac{b-a}{n}$, n=4, x_i=a+ih, i=0,1,...,n-1, равно ...

Вариант 2

Найти приближенное значение интеграла вычисленное по формуле прямоугольников и трапеции

$$\int_{7}^{12} (x-6) dx$$
 где $h = \frac{b-a}{n}$, n=5 x_i=a+ih, i=0,1,...,n-1, равно ...

Вариант 3

Найти приближенное значение интеграла вычисленное по формуле прямоугольников и трапеции

$$\int_{0}^{7} (x+4)dx$$
 где $h = \frac{b-a}{n}$, n=5 х_i=a+ih, i= 0,1,...,n-1, равно ...

Вариант 4

Найти приближенное значение интеграла вычисленное по формуле прямоугольников и трапеции

$$\int_{2}^{6} (3x-5)dx$$
где $h = \frac{b-a}{n}$, n=4, x_i=a+ih, i=0,1,...,n-1, равно ...

Вариант 5

Найти приближенное значение интеграла вычисленное по формуле прямоугольников и трапеции

$$\int_{4}^{8} (2x-4) dx$$
 где $h = \frac{b-a}{n}$, n=4, x_i=a+ih, i= 0,1,...,n-1, равно ...

Вариант 6

Найти приближенное значение интеграла вычисленное по формуле прямоугольников и трапеции

$$\int_{1}^{6} (2x+3)dx$$
 где $h = \frac{b-a}{n}$, n=5 x_i=a+ih, i=0,1,...,n-1, равно ...

Практическая работа № 10

Тема: « Нахождение производных функции в точке x по заданной таблично функции y = f(x) методом численного дифференцирования

Цель: Научиться находить производные функций в точке x по заданной таблично функции y = f(x) методом численного дифференцирования.

Время выполнения: Повторение теоретического материала — 12 минут, решение по образцу — 18 минут, , самостоятельное выполнение заданий — 60 минут. Задания.

Вариант 1 По таблице значений функции

X	0	1	2
v	4	6	9

Составлена таблица конечных разностей:

X	У	Δy	$\frac{\Delta}{2} \acute{o}$
0	4	2	
1	6	3	1
2	9	2	

Тогда приближенное значение производной функции $f'(x) = \frac{1}{h} (\Delta y_0 + \frac{2t-1}{2} \Delta^2 y_0 + ...)$ где $t = \frac{x-x_0}{h}$ в точке x=0.5, равно...

Вариант 2

По таблице значений функции

X	3	4	5
у	0	5	9

Составлена таблица конечных разностей:

X	У	Δy	$\frac{\Delta}{2} \acute{o}$
3	0	3	
2	3	4	1
3	7	·	

Тогда приближенное значение производной функции $f'(x) = \frac{1}{h} (\Delta y_0 + \frac{2t-1}{2} \Delta^2 y_0 + ...)$ где $t = \frac{x-x_0}{h}$ в точке x=1,5, равно...

Вариант 3

По таблице значений функции

X	4	5	6
y	2	3	9

Составлена таблица конечных разностей:

X	У	Δy	$\frac{\Delta}{2} \acute{o}$
4	2	1	
5	3		5
6	9	6	

Тогда приближенное значение производной функции $f'(x) = \frac{1}{h} (\Delta y_0 + \frac{2t-1}{2} \Delta^2 y_0 + ...)$

где
$$t = \frac{x - x_0}{h}$$
 в точке x=4,5 равно...

Вариант 4

По таблице значений функции

X	8	9	10
У	1	4	9

Составлена таблица конечных разностей:

X	У	Δy	$\frac{\Delta}{2} \acute{o}$
8	1	3	
9	4	5	2
10	9		

Тогда приближенное значение производной функции $f'(x) = \frac{1}{h} (\Delta y_0 + \frac{2t-1}{2} \Delta^2 y_0 + ...)$

где
$$t = \frac{x - x_0}{h}$$
 в точке x=8,5 равно...

Вариант 5

По таблице значений функции

X	5	6	7
У	2	3	10

Составлена таблица конечных разностей:

X	У	Δy	Δ
			⁻ 0

5	2		
		1	
6	3	_	6
	1.0	7	
1	10		

Тогда приближенное значение производной функции $f'(x) = \frac{1}{h}(\Delta y_0 + \frac{2t-1}{2} \Delta^2 y_0 + ...)$ где $t = \frac{x-x_0}{h}$ в точке x=5,5 равно...

Вариант 6

По таблице значений функции

X	3	4	5
У	2	6	7

Составлена таблица конечных разностей:

X	У	Δy	$\frac{\Delta}{2} \acute{o}$
3	2	4	
4	6	1	-3
5	7	1	

Тогда приближенное значение производной функции $f'(x) = \frac{1}{h} (\Delta y_0 + \frac{2t-1}{2} \Delta^2 y_0 + ...)$ где $t = \frac{x-x_0}{h}$ в точке x=3,5 равно...

Критерии оценки выполнения практических работ

«5»-Работа должна быть выполнена правильно и в полном объёме , 90-100% выполнения.

«4»-Работа выполнена правильно, но имеются недочеты, процент выполнения 75-89%.

«3»- Работа выполнена правильно, но имеются ошибки, процент выполнения 50-74%.